Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-475727

RESUMO

Obesity is common and associated with more severe COVID-19, proposed to be in part related to an adipokine-driven pro-inflammatory state. Here we analysed single cell transcriptomes from bronchiolar lavage in three adult cohorts, comparing obese (Ob, body mass index (BMI) >30m2) and non-obese (N-Ob, BMI <30m2). Surprisingly, we found that Ob subjects had attenuated lung immune/inflammatory responses in SARS-CoV-2 infection, with decreased expression of interferon (IFN), IFN{gamma} and tumour necrosis factor (TNF) alpha response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Analysis of peripheral blood immune cells in an independent adult cohort showed a similar, but less marked, reduction in type I IFN and IFN{gamma} response genes, as well as decreased serum IFN, in Ob patients with SARS-CoV-2. Nasal immune cells from Ob children with COVID-19 also showed reduced enrichment of IFN and IFN{gamma} response genes. Altogether, these findings show blunted tissue immune responses in Ob COVID-19 patients, with clinical implications.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263684

RESUMO

BackgroundThe COVID-19 pandemic has overwhelmed the respiratory isolation capacity in hospitals; many wards lacking high-frequency air changes have been repurposed for managing patients infected with SARS-CoV-2 requiring either standard or intensive care. Hospital-acquired COVID-19 is a recognised problem amongst both patients and staff, with growing evidence for the relevance of airborne transmission. This study examined the effect of air filtration and ultra-violet (UV) light sterilisation on detectable airborne SARS-CoV-2 and other microbial bioaerosols. MethodsWe conducted a crossover study of portable air filtration and sterilisation devices in a repurposed surge COVID ward and surge ICU. National Institute for Occupational Safety and Health (NIOSH) cyclonic aerosol samplers and PCR assays were used to detect the presence of airborne SARS-CoV-2 and other microbial bioaerosol with and without air/UV filtration. ResultsAirborne SARS-CoV-2 was detected in the ward on all five days before activation of air/UV filtration, but on none of the five days when the air/UV filter was operational; SARS-CoV-2 was again detected on four out of five days when the filter was off. Airborne SARS-CoV-2 was infrequently detected in the ICU. Filtration significantly reduced the burden of other microbial bioaerosols in both the ward (48 pathogens detected before filtration, two after, p=0.05) and the ICU (45 pathogens detected before filtration, five after p=0.05). ConclusionsThese data demonstrate the feasibility of removing SARS-CoV-2 from the air of repurposed surge wards and suggest that air filtration devices may help reduce the risk of hospital-acquired SARS-CoV-2. FundingWellcome Trust, MRC, NIHR

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-446781

RESUMO

Prevention of SARS-CoV-2 entry in cells through the modulation of viral host receptors, such as ACE2, could represent a new therapeutic approach complementing vaccination. However, the mechanisms controlling ACE2 expression remain elusive. Here, we identify the farnesoid X receptor (FXR) as a direct regulator of ACE2 transcription in multiple COVID19-affected tissues, including the gastrointestinal and respiratory systems. We demonstrate that FXR antagonists, including the over-the-counter compound z-guggulsterone (ZGG) and the off-patent drug ursodeoxycholic acid (UDCA), downregulate ACE2 levels, and reduce susceptibility to SARS-CoV-2 infection in lung, cholangiocyte and gut organoids. We then show that therapeutic levels of UDCA downregulate ACE2 in human organs perfused ex situ and reduce SARS-CoV-2 infection ex vivo. Finally, we perform a retrospective study using registry data and identify a correlation between UDCA treatment and positive clinical outcomes following SARS-CoV-2 infection, including hospitalisation, ICU admission and death. In conclusion, we identify a novel function of FXR in controlling ACE2 expression and provide evidence that this approach could be beneficial for reducing SARS-CoV-2 infection, thereby paving the road for future clinical trials.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248765

RESUMO

In a study of 207 SARS-CoV2-infected individuals with a range of severities followed over 12 weeks from symptom onset, we demonstrate that an early robust bystander CD8 T cell immune response, without systemic inflammation, is characteristic of asymptomatic or mild disease. Those presenting to hospital had delayed bystander responses and systemic inflammation already evident at around symptom onset. Such early evidence of inflammation suggests immunopathology may be inevitable in some individuals, or that preventative intervention might be needed before symptom onset. Viral load does not correlate with the development of this pathological response, but does with its subsequent severity. Immune recovery is complex, with profound persistent cellular abnormalities correlating with a change in the nature of the inflammatory response, where signatures characteristic of increased oxidative phosphorylation and reactive-oxygen species-associated inflammation replace those driven by TNF and IL-6. These late immunometabolic inflammatory changes and unresolved immune defects may have clinical implications.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20182279

RESUMO

COVID-19 poses a major challenge to care homes, as SARS-CoV-2 is readily transmitted and causes disproportionately severe disease in older people. Here, 1,167 residents from 337 care homes were identified from a dataset of 6,600 COVID-19 cases from the East of England. Older age and being a care home resident were associated with increased mortality. SARS-CoV-2 genomes were available for 700 residents from 292 care homes. By integrating genomic and temporal data, 409 viral clusters within the 292 homes were identified, indicating two different patterns - outbreaks among care home residents and independent introductions with limited onward transmission. Approximately 70% of residents in the genomic analysis were admitted to hospital during the study, providing extensive opportunities for transmission between care homes and hospitals. Limiting viral transmission within care homes should be a key target for infection control to reduce COVID-19 mortality in this population. Impact statementSARS-CoV-2 can spread efficiently within care homes causing COVID-19 outbreaks among residents, who are at increased risk of severe disease, emphasising the importance of stringent infection control in this population.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20139873

RESUMO

BackgroundPandemic COVID-19 caused by the coronavirus SARS-CoV-2 has a high incidence of patients with severe acute respiratory syndrome (SARS). Many of these patients require admission to an intensive care unit (ICU) for invasive artificial ventilation and are at significant risk of developing a secondary, ventilator-associated pneumonia (VAP). ObjectivesTo study the incidence of VAP, as well as differences in secondary infections, and bacterial lung microbiome composition of ventilated COVID-19 and non-COVID-19 patients. MethodsIn this prospective observational study, we compared the incidence of VAP and secondary infections using a combination of a TaqMan multi-pathogen array and microbial culture. In addition, we determined the lung microbime composition using 16S RNA analyisis. The study involved eighteen COVID-19 and seven non-COVID-19 patients receiving invasive ventilation in three ICUs located in a single University teaching hospital between April 13th 2020 and May 7th 2020. ResultsWe observed a higher percentage of confirmed VAP in COVID-19 patients. However, there was no statistical difference in the detected organisms or pulmonary microbiome when compared to non-COVID-19 patients. ConclusionCOVID-19 makes people more susceptible to developing VAP, partly but not entirely due to the increased duration of ventilation. The pulmonary dysbiosis caused by COVID-19, and the array of secondary infections observed are similar to that seen in critically ill patients ventilated for other reasons.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20118489

RESUMO

BackgroundMicrobial cultures for the diagnosis of pneumonia take several days to return a result, and are frequently negative, compromising antimicrobial stewardship. The objective of this study was to establish the performance of a syndromic molecular diagnostic approach, using a custom TaqMan array card (TAC) covering 52 respiratory pathogens, and assess its impact on antimicrobial prescribing. MethodsThe TAC was validated against a retrospective multi-centre cohort of broncho-alveolar lavage samples. The TAC was assessed prospectively in patients undergoing investigation for suspected pneumonia, with a comparator cohort formed of patients investigated when the TAC laboratory team were unavailable. Co-primary outcomes were sensitivity compared to conventional microbiology and, for the prospective study, time to result. Metagenomic sequencing was performed to validate findings in prospective samples. Antibiotic free days (AFD) were compared between the study cohort and comparator group. Results128 stored samples were tested, with sensitivity of 97% (95% CI 88-100%). Prospectively 95 patients were tested by TAC, with 71 forming the comparator group. TAC returned results 51 hours (IQR 41-69 hours) faster than culture and with sensitivity of 92% (95% CI 83-98%) compared to conventional microbiology. 94% of organisms identified by sequencing were detected by TAC. There was a significant difference in the distribution of AFDs with more AFDs in the TAC group (p=0.02). TAC group were more likely to experience antimicrobial de-escalation (OR 2.9 (95%1.5-5.5). ConclusionsImplementation of a syndromic molecular diagnostic approach to pneumonia led to faster results, with high sensitivity and impact on antibiotic prescribing. Trial registrationThe prospective study was registered with clinicaltrials.gov NCT03996330

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20114520

RESUMO

BackgroundThere is urgent need for safe and efficient triage protocols for hospitalized COVID-19 suspects to appropriate isolation wards. A major barrier to timely discharge of patients from the emergency room and hospital is the turnaround time for many SARS-CoV-2 nucleic acid tests. We validated a point of care nucleic acid amplification based platform SAMBA II for diagnosis of COVID-19 and performed an implementation study to assess its impact on patient disposition at a major academic hospital. MethodsWe prospectively recruited COVID-19 suspects admitted to hospital (NCT04326387). In an initial pilot phase, individuals were tested using a nasal/throat swab with the SAMBA II SARS-CoV-2 rapid diagnostic platform in parallel with a combined nasal/throat swab for standard central laboratory RT-PCR testing. In the second implementation phase, we examined the utility of adding the SAMBA platform to routine care. In the pilot phase, we measured concordance and assay validity using the central laboratory as the reference standard and assessed assay turnaround time. In the implementation phase, we assessed 1) time to definitive bed placement from admission, 2) time spent on COVID-19 holding wards, 3) proportion of patients in isolation versus COVID negative areas following a test, comparing the implementation phase with the 10 days prior to implementation. ResultsIn phase I, 149 participants were included in the pilot. By central laboratory RT-PCR testing, 32 (21.5%) tested positive and 117 (78.5%). Sensitivity and specificity of the SAMBA assay compared to RT-PCR lab test were 96.9% (95% CI 0.838-0.999) and 99.1% (0.953-0.999), respectively. Median time to result was 2.6 hours (IQR 2.3 to 4.8) for SAMBA II SARS-CoV-2 test and 26.4 hours (IQR 21.4 to 31.4) for the standard lab RT-PCR test (p<0.001). In the first 10 days of the SAMBA implementation phase, we conducted 992 tests, with the majority (59.8%) used for hospital admission, and the remainder for pre-operative screening (11.3%), discharge planning (10%), in-hospital screening of new symptoms (9.7%). Comparing the pre-implementation (n=599) with the implementation phase, median time to definitive bed placement from admission was reduced from 23.4 hours (8.6-41.9) to 17.1 hours (9.0-28.8), P=0.02 in Cox analysis, adjusted for age, sex, comorbidities and clinical severity at presentation. Mean length of stay on a COVID-19 holding ward decreased from 58.5 hours to 29.9 hours (P<0.001). Use of single occupancy rooms amongst those tested fell from 30.8% before to 21.2% (P=0.03) and 11 hospital bay closures (on average 6 beds each) were avoided after implementation of the POC assay. ConclusionsThe SAMBA II SARS-CoV-2 rapid assay performed well compared to a centralized laboratory RT-PCR platform and demonstrated shorter time to result both in trial and real-world settings. It was also associated with faster time to definitive bed placement from the emergency room, greater availability of isolation rooms, avoidance of hospital bay closures, and greater movement of patients to COVID negative open "green" category wards. Rapid testing in hospitals has the potential to transform ability to deal with the COVID-19 epidemic.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20082909

RESUMO

Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3-week period (April 2020), 1,032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19) >7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B{middle dot}1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff. Appendix: The CITIID-NIHR COVID-19 BioResource CollaborationO_ST_ABSPrincipal InvestigatorsC_ST_ABSStephen Baker, John Bradley, Gordon Dougan, Ian Goodfellow, Ravi Gupta, Paul J. Lehner, Paul A. Lyons, Nicholas J. Matheson, Kenneth G.C. Smith, M. Estee Torok, Mark Toshner, Michael P. Weekes Infectious Diseases DepartmentNicholas K. Jones, Lucy Rivett, Matthew Routledge, Dominic Sparkes, Ben Warne SARS-CoV-2 testing teamJosefin Bartholdson Scott, Claire Cormie, Sally Forrest, Harmeet Gill, Iain Kean, Mailis Maes, Joana Pereira-Dias, Nicola Reynolds, Sushmita Sridhar, Michelle Wantoch, Jamie Young COG-UK Cambridge Sequencing TeamSarah Caddy, Laura Caller, Theresa Feltwell, Grant Hall, William Hamilton, Myra Hosmillo, Charlotte Houldcroft, Aminu Jahun, Fahad Khokhar, Luke Meredith, Anna Yakovleva NIHR BioResourceHelen Butcher, Daniela Caputo, Debra Clapham-Riley, Helen Dolling, Anita Furlong, Barbara Graves, Emma Le Gresley, Nathalie Kingston, Sofia Papadia, Hannah Stark, Kathleen E. Stirrups, Jennifer Webster Research nursesJoanna Calder, Julie Harris, Sarah Hewitt, Jane Kennet, Anne Meadows, Rebecca Rastall, Criona O,Brien, Jo Price, Cherry Publico, Jane Rowlands, Valentina Ruffolo, Hugo Tordesillas NIHR Cambridge Clinical Research FacilityKaren Brookes, Laura Canna, Isabel Cruz, Katie Dempsey, Anne Elmer, Naidine Escoffery, Stewart Fuller, Heather Jones, Carla Ribeiro, Caroline Saunders, Angela Wright Cambridge Cancer Trial CentreRutendo Nyagumbo, Anne Roberts Clinical Research Network EasternAshlea Bucke, Simone Hargreaves, Danielle Johnson, Aileen Narcorda, Debbie Read, Christian Sparke, Lucy Warboys Administrative staff, CUHKirsty Lagadu, Lenette Mactavous CUH NHS Foundation TrustTim Gould, Tim Raine, Ashley Shaw Cambridge Cancer Trials CentreClaire Mather, Nicola Ramenatte, Anne-Laure Vallier Legal/EthicsMary Kasanicki CUH Improvement and Transformation TeamPenelope-Jane Eames, Chris McNicholas, Lisa Thake Clinical Microbiology & Public Health Laboratory (PHE): Neil Bartholomew, Nick Brown, Martin Curran, Surendra Parmar, Hongyi Zhang Occupational HealthAilsa Bowring, Mark Ferris, Geraldine Martell, Natalie Quinnell, Giles Wright, Jo Wright Health and SafetyHelen Murphy Department of Medicine Sample LogisticsBenjamin J. Dunmore, Ekaterina Legchenko, Stefan Graf, Christopher Huang, Josh Hodgson, Kelvin Hunter, Jennifer Martin, Federica Mescia, Ciara ODonnell, Linda Pointon, Joy Shih, Rachel Sutcliffe, Tobias Tilly, Zhen Tong, Carmen Treacy, Jennifer Wood Department of Medicine Sample Processing and Acquisition: Laura Bergamaschi, Ariana Betancourt, Georgie Bowyer, Aloka De Sa, Maddie Epping, Andrew Hinch, Oisin Huhn, Isobel Jarvis, Daniel Lewis, Joe Marsden, Simon McCallum, Francescsa Nice, Ommar Omarjee, Marianne Perera, Nika Romashova, Mateusz Strezlecki, Natalia Savoinykh Yarkoni, Lori Turner Epic team/other computing supportBarrie Bailey, Afzal Chaudhry, Rachel Doughton, Chris Workman Statistics/modellingRichard J. Samworth, Caroline Trotter

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20095687

RESUMO

BackgroundThe burden and impact of healthcare-associated COVID-19 infections is unknown. We aimed to examine the utility of rapid sequencing of SARS-CoV-2 combined with detailed epidemiological analysis to investigate healthcare-associated COVID-19 infections and to inform infection control measures. MethodsWe set up rapid viral sequencing of SARS-CoV-2 from PCR-positive diagnostic samples using nanopore sequencing, enabling sample-to-sequence in less than 24 hours. We established a rapid review and reporting system with integration of genomic and epidemiological data to investigate suspected cases of healthcare-associated COVID-19. ResultsBetween 13 March and 24 April 2020 we collected clinical data and samples from 5191 COVID-19 patients in the East of England. We sequenced 1000 samples, producing 747 complete viral genomes. We conducted combined epidemiological and genomic analysis of 299 patients at our hospital and identified 26 genomic clusters involving 114 patients. 66 cases (57.9%) had a strong epidemiological link and 15 cases (13.2%) had a plausible epidemiological link. These results were fed back to clinical, infection control and hospital management teams, resulting in infection control interventions and informing patient safety reporting. ConclusionsWe established real-time genomic surveillance of SARS-CoV-2 in a UK hospital and demonstrated the benefit of combined genomic and epidemiological analysis for the investigation of healthcare-associated COVID-19 infections. This approach enabled us to detect cryptic transmission events and identify opportunities to target infection control interventions to reduce further healthcare-associated infections.

11.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-041319

RESUMO

The COVID-19 pandemic is expanding at an unprecedented rate. As a result, diagnostic services are stretched to their limit, and there is a clear need for the provision of additional diagnostic capacity. Academic laboratories, many of which are closed due to governmental lockdowns, may be in a position to support local screening capacity by adapting their current laboratory practices. Here, we describe the process of developing a SARS-Cov2 diagnostic workflow in a conventional academic Containment Level 2 (CL2) laboratory. Our outline includes simple SARS-Cov2 deactivation upon contact, the methods for a quantitative real-time reverse transcriptase PCR (qRT-PCR) detecting SARS-Cov2, a description of process establishment and validation, and some considerations for establishing a similar workflow elsewhere. This was achieved under challenging circumstances through the collaborative efforts of scientists, clinical staff, and diagnostic staff to mitigate to the ongoing crisis. Within 14 days, we created a validated COVID-19 diagnostics service for healthcare workers in our local hospital. The described methods are not exhaustive, but we hope may offer support to other academic groups aiming to set up something comparable in a short time frame.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...